

Stochastic Late Accretion on the Earth, Moon and Mars

William Bottke

Center for Lunar Origin and Evolution (CLOE)
Southwest Research Institute, Boulder, CO

R. J. Walker (U. Maryland), J. M. D. Day (U. Maryland), D. Nesvorny (SwRI), L. Tanton-Elkins (MIT)

Dixon / cosmographica.com

Why Study the Moon?

- ■The Moon itself is fascinating, but it is also a "Rosetta Stone" for telling us about:
 - -The unknown nature of the primordial Earth!
 - -The critical last stages of planet formation throughout the solar system!

Planetesimal and Planet Formation

- Disk particles come together by gravity.
- Collisions make larger objects by "accretion".
- Planetary embryos collide and eventually create planets.

Outcomes from the Moon-Forming Impact

- Giant impact leads to last differentiation event on the Earth and Moon near ~60 (+90, –10) My after the formation of CAIs at 4.56 Ga.
- Final phase of core formation and global magma oceans occur on both worlds.
- A thick stable lunar crust grows over time. The Earth also grows a crust that can be recycled by plate tectonics.

That's It, Right?

■ Are the Earth and Moon effectively done in terms of their internal structure being influenced by impacts?

Highly Siderophile Elements (HSEs)

- HSEs (Re, Os, Ir, Ru, Pt, Rh, Au) are metals with high metal-silicate partition coefficients (> 10⁴).
- During primary accretion, differentiation, and core segregation, HSEs <u>should</u> go to a planet's core, never to be seen again.

Mantle HSEs from Earth, Moon, and Mars

- Earth's ancient mantle only depleted in HSEs by factor of ~200 compared to chondrites. Why?
- It also had chondritic relative proportions (i.e., it is pretty "flat" compared to standard chondrite abundances).

Mantle HSEs from Earth, Moon, and Mars

■ The Moon is a factor of ~20 lower than the Earth in HSEs, but also has chondritic relative proportions. Why?

What is "Late Accretion"?

Addition of "chondritic" material to the Earth during end stages of, or following core formation (Chou, 1978).

How Much Mass is Needed for Earth, Moon, Mars?

- Chondritic additions of > 0.4% of the Earth's mass are required to provide necessary HSEs.
- **■** We need a factor of 1,200 more mass for Earth than Moon!

The Nature of Late Accretion

- The Earth/Moon see the same impacting population, with the impactors hitting in ~20:1 ratio.
- The input mass in Earth/Moon mantles need ratio of ~1,200.
- The Moon loses ~40% of projectile material upon impact. This moves Earth/Moon input mass ratio from ~1,200 to ~700 (e.g., Artemieva & Shuvalov 2008)

Testing Various Impacting Populations

■ We decided to use a Monte Carlo code to test how different impacting populations affect the Earth and Moon.

Model #1 Many Impactors, Steep SFD

Lots of tiny impactors (q = -4) does not yield a high input mass flux ratio.

Model #2 Few Impactors, Steep SFD

- Fewer impactors with steep size distribution (q = -4) also does not work. But...
- Stochastic variations yield mass ratios approaching ~700.

Monte Carlo Model #3 Few Impactors, Shallow SFD

- **The Example 2** Few impactors with shallow size distribution (q = -2).
- On average, Earth hit by large impactors that miss Moon.
- Success rate approaches 25-30%

Late Accretion May Require Shallow Size Distributions

■ We find that late accretion size distribution with most of their mass in largest bodies (q < -2) produces best results.

Evidence For A Shallow Late Accretion Population

- New planetesimal formation models make *D* ~ 100 km bodies.
- When inserted into accretion code, it produces a shallow "foot" for D > 200 km.
- **■** The "foot" is q ~ -2.

Morbidelli, Bottke et al. (2009)

Evidence For A Shallow Late Accretion Population

Accretion SFD:

- The "foot" is resistant to collisional evolution for runs near 1 AU.
- Inner main belt:
 - A "foot" exists for D > 250 km asteroids.
- Martian impact basins:
 - -A "foot" is seen when basins are changed to projectile diameters.

Morbidelli, Bottke et al. (2009); Frey et al. (2007)

Evidence For A Shallow Late Accretion Population

Accretion SFD:

 The "foot" is resistant to collisional evolution for runs near 1 AU.

Inner main belt:

A "foot" exists forD > 250 km asteroids.

■ Martian impact basins:

 A "foot" is seen when basins are changed to projectile diameters.

Morbidelli, Bottke et al. (2009); Frey et al. (2007)

Implications: Big Late Accretion Projectiles

Diameter of largest late accretion projectiles to strike Earth, Moon, and Mars:

Earth	Moon	Mars
2500-3100 km	250-280 km	1500-1800 km

- –Impact modifies Earth's obliquity by ~10°. Can this explain the inclination of Moon's orbit?
- Lunar impactor large enough to produce South-Pole
 Aitken basin (or possibly Procellarum basin).
- -Martian impactor is the right size to make gigantic Borealis basin.

Implications: Did Lunar Mantle Water Come from Late Accretion?

- Assume the Moon was hit during magma ocean phase:
 - -D = 250-280 km projectile
 - Assume it had 0.1% water and was mixed into lunar mantle between depths of 100-500 km.
- This yields a 1-3 ppm wt% water, the same values estimated from lunar apatites (McCubbin et al. 2010).

Late Accretion on the Earth: A Case of "Hit and Nearly Run"

- D = 2500-3200 km impactors on Earth should act like "hit and nearly run" collisions.
- Most of the projectile's core escapes immediate accretion but the core fragments are eventually re-agglomerated.
- The iron and HSEs possibly emulsify into mantle immediately or are slowly incorporated into mantle via plate tectonics.

Simulated Planet Growth

Starting with several hundred "mini-planets", collisions cause bodies to merge and form big planets!

Simulated Planet Growth

■ In the end, we end up with model planets like our own.

Planetesimal Formation

- Newly-formed Sun surrounded by an orbiting disk of gas and dust.
- Disk particles come together by gravity. Collisions make larger and larger objects by "accretion".

Animation from Tanga et al. (2003)

More Late Accretion Constraints

- "Pristine" lunar rocks have very low HSEs and probably dominate lunar crust. This suggests crust is unlikely to be a major reservoir of HSE.
- The oldest known sample of the lunar crust formed ~100 My after CAI formation (4.46 Ga).
- Late accretion impactors need to hit within a few tens of My after Moon formation to supply HSEs.

■Model 4:

Few impactors, with a shallow size distribution (q = 1.5).

Success rate of >50%

Highly Siderophile Elements in Earth's Mantle

- Mantle peridotites indicate Earth's ancient mantle was only depleted in HSEs by factor of ~200 compared to chondrites.
- If HSEs are mixed throughout mantle, chondritic additions of ~0.4% of the Earth's mass are required to provide necessary HSEs.

Highly Siderophile Elements in Lunar Mantle

- HSE abundances are apparently very low.
- HSE versus MgO plots consistent with >20 times depletion relative to terrestrial primitive upper mantle.

Walker et al. (2004); Day et al. (2007)

Take Away Message

- Big events on Earth and Moon are linked in time.
- The Earth and Moon have similar HSE signatures.
- The mass added to Earth was higher by factor of ~1,200!
- How do we get this?